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AbstracL The method of supersymmetric transformation is used to obtain from the original 
w e  potential VI the shallower and gentler pseudopotential Vpp for the higher (conduction) band 
by lnnsforming away the levels in the lower core bands. However, it is shown that only after 
the removal of entire bands will the resulting Vpp give rise to smooth. nodeless and essentially 
norm-conserving pseudowavefunctions. Once a VI and a few of its lowest core wavefunctions 
derivable from some self-consistent density functional theory are known. this method of code 
of constructing VPP should be immediately applicable. 

In the calculation of electronic band structures, energetics and other properties including 
bonding etc the method of pseudopotentials is widely used [I]. This method exploits the 
orthogonality of the valence electrons in the conduction band to the deeper-lying core 
states in the lower bands, the requirement of which produces a large kinetic energy that 
contributes an effective repulsive potential for the valence electrons [Z]. In the modern 
versions of the pseudopotential usually generated from all-electron atomic calculations 111,  
a spherical screening approximation imposed on the radial Kohn-Sham equation [3]  is used 
to solve for the self-consistent one-electron potential V [ p ;  r ] .  p ( r )  being the sum of electron 
densities for the occupied wavefunctions Rn,(r).  Most pseudopotentials are then constructed 
from the above VIP; r ]  by imposing a few general conditions on the corresponding 
pseudowavefunctions, such as nodelessness, smoothness and norm-conservation 14-lo]. In 
fact, a pseudowavefunction is first constructed by fulfilling those conditions; the remaining 
non-uniqueness is then exploited to produce a smooth pseudopotential by inverting the radial 
Schrijdinger equation. A cut-off radius r,, is usually chosen [I I ]  so that beyond this radius 
the normalized atomic radial pseudowavefunction with angular momentum 1 is equal to the 
corresponding radial all-elecaon wavefunction. The screening from the valence electrons 
has then to be unscreened to retrieve the semilocal ionic pseudopotential that depends 
on the angular momentum 1 but is otherwise local [12].  The ionic pseudopotential so 
obtained is supposedly independent of the chemical environment, i.e. it would adequately 
reproduce the all-electron behaviour outside the core region when placed in different 
chemical environments. A Iocal (1-independent) pseudopotential can be extracted from 
the sum of the semi-local (f-dependent) ones [ I O ]  or the semi-local ones can be converted 
to fully non-local pseudopotentials if so desired for ease of computation in reciprocal space 

In this paper we introduce a new approach [I41 to the pseudopotential, based not on 
the concept of orthogonalized plane waves but rather on the recently introduced method 
of supersymmetric transformation (MST) 115-181. Once the atomic, screened V [ p ;  r ]  and 
the associated single-electron ground and low-lying core states of the density functional 
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theory, usually obtained by using trial wavefunctions, are known as in the conventional 
approach, we would be able to construct directly the screened semi-local pseudopotential 
by applying the MST without having to resort to fust constructing a trial pseudowavefunction 
and then inverting the radial Schriidinger equation. There is then also no need to choose a 
'core' radius rd as mentioned before [ll]. The rest of the procedure, such as unscreening 
and local potential extraction, remains the same as in the conventional approach mentioned 
above. Aside from guaranteeing the equality of the pseudopotential energy eigenvalues to 
the valence all-electron energy eigenvalues, our pseudopotential can also be shown to be 
norm-conserving, thus keeping its significance in calculating energetics, bonding etc intact. 
In the usual 'core' region, OUT pseudowavefunctions are automatically nodeless and smooth 
as naturally follows from the MST without any extra effort. It should then be easy to combine 
our pseudopotential with plane waves in numerical calculations [lo]. 

To establish the language we shall outline the MST in the context of non-relativistic 
quantum mechanics as follows [15, 161. The MST consists in factorizing a Hamiltonian 
designated as HI into two factors in the manner H1 = A r A ;  + EO, and in constructing 
its partner Hamiltonian Hz, HZ = A;A: + Eo. Here Eo is the ground state energy of HI 
associated with the eigenfunction @'(Eo; x )  and A*(Eo) are Hermitian conjugate operators 
satisfying also the relation that A -  = (A+)'. 

It can be easily shown that if E, is the nth energy level of HI corresponding to the 
normalized eigenfunction +p) (En:x) ,  it will also be the (n - 1)th energy level of H2 
corresponding to the normalized eigenfunction 

except for n = 0. in which case A;(Eo)?bp'(Eo; x )  = 0 and @ ~ o - l ' ( E ~ ; x )  does not exist. 
This means that the supersymmetric partner HZ has the same energy spectrum as that of 
HI, except for the lowest level EO which has been eliminated. The energy El becomes the 
ground level of Hz, Likewise we can perform a supersymmetric transformation (ST) to 

H~ = A : ( E ~ A ; ( E ~  + 
and find its partner 

H3 = A ; ( E I ) A : ( E I )  + E1 

$ ~ - ' ) ( E I ;  x )  K A;(El)@)(E1; x )  = 0.  
whose spectrum is the same as that of H2 except for El, the ground level of Hz, since 

It is seen that as successive STs are performed, the Hamiltonian changes from Hl to Hz and 
from Hz to Hs etc during which the lowest energy levels Eo, El etc are eliminated one by 
one, respectively. It only remains to find the operators A:(E).  which can be shown to be 
given by 

A:(E)  = (l/&)(fip + & ( E ;  x ) )  

&(E;  x )  = (d /d r ) InME;x)  

H"@"(E; x )  = E+"'.,% *) 

where p = -id/&. The function U,(E; x )  has to be real and is given by 

where @ . ( E ; x )  satisfies 

and the subscript n refers to the stage on the ST ladder. Since 
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the evaluation of the added potential AV,+] given by 

(3) 

completes this short outline of the MST, showing the relation between the Hamiltonian H. 
and the next one Hn+l after one more ST. It is important to note that, for U. to be real, the 
eigenfunction *,, must necessarily be real for the straightforward application of the ST. 

The steps of adapting the MST to finding the pseudopotential Vpp is clear. To obtain 
VPP for a certain energy band, say the conduction band, we just have to transform away 
all the energy levels below it, one after the other. The potential term in the Hamiltonian 
after the last ST would then be the VPP we are looking for. This would be, however, an 
almost impossible task since there are - IOz2 levels in a band. So. one might appeal to the 
Bloch form of the electron wavefunction and try to deal directly, as usual, with the periodic 
part U,,,&) in a unit cell, but the straightforward application of ST to u y , t ( r )  or to the full 
Bloch function &,x(r) itself runs into difficulty since neither of them are real, except for 
the particular values of k such as k = 0, for which the wavefunctions represent standing 
waves 1141. 

To avoid complex wavefunctions we relax the requirement of the periodic boundary 
condition by considering a bounded crystal, whose eigenfunctions can be all real. For 
concreteness and convenience in notations, we may think of a finite Kronig-Penney chain 
U91. 

d2 
dx2 

AV.+I = [ A ; ( E ) , A i ( E ) I  =--ln$"(E;x) 

c a a 

Figure 1. Schematic drawing of the two-well system, showing VI = V&) + VR(X)  ond the 
artificially introduced SV - 0. 

To demonstrate the removal of an entire band of energy levels it is then sufficient to 
consider just a few identical potential wells, the simplest case being that of two wells 
VI@) = V&) + VR(X), depicted in figure 1, which shows two attractive core regions 
and the flat barrier in between and outside the cores. When the distance between the 
two slightly dissimilar wells (6V - 0) is very large, the two lowest eigenstates of 
HI = -.?d2/dxz+ 2 VI@) designated by @ : O ) ( E ~ ;  x )  3 @&), # ) ( c ~ ;  x) = &(x) are just the 
uncoupled ground states of the individual wells on the left and on the right, V&), V,(x) 
respectively. An infinitesimally small SV is artificially introduced to make the unperturbed 
eigenvalues of the two wells slightly different. As the spacing a decreases, coupling occurs 
and the two corresponding eigenstates of energies EO and El are, in the tight-binding 
approximation, linear combinations of &(x)  and @R(x), given by 

where the mamix C has a non-vanishing determinant. Eliminating *;"(Eo; x) via the ST, i.e. 
A;(Eo)@(Eo; x )  = 0 as discussed after equation (I), we obtain Hz = -kd2/dx2+ V2(x)  

where Vdx) = K(x) - (d2/dx2) In ~,@)(x)  according to equation (3). One can be easily 
convinced that in Vz(x), while the bottoms of the two wells would rise, the flat inter-well 
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barrier region would become depressed, represented schematically in figure 2. It is seen 
that the pseudopotential VI(*) is generally shallower and more gently varying than VI (x), 
yet remaining a local potential in this onedimensional system. However, the ground state 
wavefunction of this VI(*) behaves quite differently from @cI1(I)(El; x )  in the originally flat 
inter-well region of V,(x) ,  i.e. the pseudopotential at this stage of the ST is not norm- 
conserving. Next we apply the ST once more, eliminating the ground state 

$f'(Et; *) = I I / m A ; ( E o ;  x)$!')Wt: *) 

A;(EI) = (l/v'%[-d/dx + (d/dx) 

of HZ via the use of 
x ) ]  

that results in A;(.El)@)(El; x )  = 0. This second ST leaves us with H3 = -fd2/dx2 t 
V3(x) where, by equation (3). 

V3(x) = VI(*) - (d2/dx2) In@f)(Et; x )  

and the two lowest levels of VI of the two-well system have been eliminated, 

Figure 2. Schematic drawing depicting V z ( x ) ,  obtained f" V I ( X ) ,  about one supenymmetric 
transfomtion. Note the depression in the inter-well region. 

By the repeated use of equation (3) and equation (1) we can  express V3 in terms of the 
original VI and the two lowest eigenfunctions, @?) and @ c I 1 ( ' ) ,  

in which the finite normalization constant (El - has disappeared after the spatial 
differentiations. The prime denotes taking the first spatial derivative. 

Expressing @io) and @,(I) in terms of & and & of the separated wells VL and VR via 
equation (4), and making use of the relation that the argument of the logarithmic term in 
equation (5) can be written then as 

we immediately see that, as long as the constant determinant IC1 # 0, its vanishing upon 
the spatial differentiation in equation (5) yields the pseudopotential 

dz 
(7) 

In the spatial region pertaining to the core of VL, '#L(x) is an oscillating function whose 
derivative could be roughly estimated as &(x)  - kL'#L(x) where k t  = (2m/h2)(eL t VO). 
On the other hand, '#R(x) decays fast in this same region which, as far as the corresponding 
individual VR(X)  is concerned, is that of the fiat, high potential banier beyond its central 
attractive core, leading thus to (d /dx)h  = &(x)'#R, where ii = -(2m/Zz)c~. Obviously, 
for low-lying states in deep wells we have lR >> k~ because - E L  -cR < VO. A similar 
inequality i~ >> kR holds in the spatial region pertaining to VR, where '#R oscillates with 
the wavevector k R  while & decays with i ~ .  It follows that 

(8) 

WX) = V,W - ln[h(x)'#l(x) - @L(XMK(X)I. 

['#R'#I - &&I ZZ -i@L@R 
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,& # 0 as 6V 3 0. Since -(dz/dx2) I n i  = 0, equation in both regions, where ,&L = LR 
(7) becomes, in the tight-binding approximation, 

which is depicted schematically in figure 3. 

Figure 3. The pseudopotentid obtained affer two Sm, V,(x) ,  is depicted. Note that while the 
two attractive cores have became shallower. lhe flu barrier regions of V l ( x )  are also reatared. 

The exact generalization of the above to the case of N equally spaced potential wells. 
though non-trivial, can be made. For example, in the case of three wells labelled as 1, 2 
and 3, the determinant of equation (6) is generalized, in obvious notations, to 

where the $i are the atomic-like states in the separated wells and the +;' are the 
tight-binding eigenfunctions of the nth energy level of the three-well Hamiltonian. The 
determinant IC1 is that of the coefficients in the linear combinations of the $, in forming 
the @,("). 

In the spatial region of potential well 1, say, we may neglect $; and 4: in comparison 
to the derivatives of & and $3 in the tight-binding approximation. The determinant of the 
$i in equation (10) can then be approximated as $I(X)[(,&Z~; - ,&~@$z(x)$~(x)] where i 2 ,  

i 3  are the large decay constants of & and 4 in region 1. Due to the artifice of introducing 
the 6V to distinguish the wells V, from each other, i 2  and i 3  are only nearly but not exactly 
equal to each other, leading thus to (dz/drz) In(@! - !&@ = 0. 

It then follows, as in the steps leading to equation (9), that, after three successive 
supersymmetric transformations to eliminate the tight-binding band of the three lowest 
levels in the three-well system [20], the resulting pseudopotential is given by 

It is now clear that, for N wells, the pseudopotential after the elimination of the band of 
the N lowest levels is 

where $ n ( x )  is the ground state of the nth individual, atomic-like potential well. The 
combination of N such wells form VI, the starting crystal potential on our ST ladder derivable 
from, say, density functional theory [ l ,  31. 

In the special case of N = 1, equation (12) yields the single-well pseudopotential for 
an atomic-like system after the elimination of its lowest core states. For an arbitrary, large 
N ,  the pseudopotential obtained after transforming away the first M levels, with M e N ,  
is generally extremely complicated, as could be extrapolated from figure 2. It is only after 
eliminating the whole band of N levels, whose wavefunctions are assumed to be linear 
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combinations [21] of the $ " ( x ) ,  that the simple form of the pseudopotential as in equation 
(12) emerges. It obviously represents again a lattice of N wells, but each now modified 
into a singlewell pseudopotential given by the N = 1 case. 

A simpler mathematlcal proof can now be provided. Let * j  denote the ith bound 
eigenstate of any Hamiltonian H. We can eliminate such states by applying the operators 
A, according to the SST, i.e., A I &  = 0, A ~ A I @ . ~  = 0. A, . . . A z A I $ ~  = 0. For 
any linear combinations of such as the $i for the individual ith well given by 
@j = + Cj2@* + . . . t C~NI)N, if we apply A N . .  . A ~ A I  to $i, it always gives 
zero, i.e. A N .  . .AzAl$i = 0. Hence, eliminating all the I)j with i = I ,  2 , .  ,. , N by 
applying AN, . . . , At,  A I ,  would be equivalent to eliminating all the 4; for the individual 
well 1.2, . . . , N ,  and vice versa. This proof is clearly valid not only for one dimension, 
but also for any number of dimensions. The physical reason behind this is clear. When 
we eliminate the lowest core level from each individual well, the tight-binding band, 
whose wavefunctions are constructed by linearly combining just those single-well core 
wavefunctions, is naturally also eliminated as a whole. The converse is also true, of course. 
The validity of this physical reasoning again extends beyond one dimension, enabling us also 
to conclude that equation (12) holds for any number of dimensions. This relation between 
the individual wells and the lattice potential is implied in the conventional approach to the 
pseudopotential. However, it has to be proved explicitly as a price to pay for adapting the 
MST to the conshuction of the pseudopotential. Nevertheless, our gain is considerable. 

First, the pseudopotential in equation (12) is explicitly local. 
Second, the pseudowavefunction for the valence electron, being the ground wavefunction 

in each modified (by ST) pseudopotential well. is automatically nodeless everywhere, 
including the original 'core' regions, although no core radius needs to be specified. 

Third, wherever the true potential is flat or mildly varying, our pseudopotential of 
equation (12) will remain that way (see figure 3) since - C ~ = I ( d Z / d r Z )  In&(x) becomes 
vanishingly small due to the pure exponential decay form of the & ( x )  there. Each valence 
electron pseudowavefunction * k ( E k ;  x )  will then be a linear combination of two terms, one 
exponentially decaying, the other growing in these flat banier regions asymptotically. The 
ratio and the relative phase of the two associated amplitudes are fixed once the decay and 
growth constants JrQ and the Bloch momentum k are specified 1221. Since Q is, in  turn, 
determined by the height of the flat barrier above the eigenenergy Ek, neither of which is 
changed by the STS, the ratio of the two amplitudes including the relative phase, and hence 
the wavefunction @ k ( E k ;  x )  itself, remain the same in these flat regions under the multiple 
STs that result in the pseudopotential of equation (12). This means that our pseudopotential 
is norm-conserving for a wavefunction of any given Bloch momentum k and energy Ek 
above the core bands. 

Fourth, the valence electron pseudowavefunctions are solved only after the semi-local 
pseudopotential of equation (12) has been found. There is no need to invert a radial 
Schrddinger equation constructed for trial pseudowavefunctions. 

One further clarification for the construction of pseudopotentials in three dimensions is 
in order. For a three-dimensional solid with N atomic potential wells (muffin-tin shaped, 
say) that together make up the crystalline potential V ( r ) .  if $i denotes a certain atomic 
core level, we could merely transform away this atomic level from each of the N atomic 
potential wells. and the result would be the elimination of the whole core band of crystalline 
energy levels formed by linear combinations of the above N atomic wavefunctions. The 
key question left is: can we transform away this 4; corresponding to a wavefunction for 
the three-dimensional atom, in view of the fact that our supersymmetric transformation 



Supersymmetric approach to pseudopotentials 3525 

equations (1)-(3) are valid only for one dimension? The answer is obviously yes. This 
is because, under the usual spherical screening approximation [3], each single atomic 
potential is isotropic, leading to the conservation of angular momentum. Each atomic 
eigenfunction is therefore a product of a spherical harmonic (complex in general) and a 
radial wavefunction. The Schrodinger equation for the radial part is. of course, real. For 
any given angular momentum 1 ,  there are correspondingly various real radial wavefunctions 
and energy eigenvalues. Since this radial Schrijdinger equation is one dimensional, we 
can readily apply the supersymmetric transformation to eliminate the core levels associated 
with the radial wavefunctions one by one. For example, the transforming away of, say, a 3s 
atomic level, is equivalent to transforming away the whole 3s band of the crystalline solid. 
Thus, in three dimensions our psuedopotential for each individual well of equation (12) 
will, in the spherical screening approximation [3], depend on the angular momentum I of 
the atomic radial pseudowavefunction. In this sense, our psuedopotential is semi-local [12]. 

In conclusion, we have substantiated our claims made in the introductory paragraphs and 
shown that the MST constitutes a new and simpler approach to the construction of semi-local 
pseudopotentials. 
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